Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 316-328, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38114426

RESUMO

Single-molecule spintronics, where electron transport occurs via a paramagnetic molecule, has gained wide attention due to its potential applications in the area of memory devices to switches. While numerous organic and some inorganic complexes have been employed over the years, there are only a few attempts to employ exchange coupled dinuclear complexes at the interface, and the advantage of fabricating such a molecular spintronics device in the observation of switchable Kondo resonance was demonstrated recently in the dinuclear [Co2(L)(hfac)4] (1) complex (Wagner et al., Nat. Nanotechnol. 2013, 8, 575-579). In this work, employing an array of theoretical tools such as density functional theory (DFT), the ab initio CASSCF/NEVPT2 method, and DFT combined with nonequilibrium Green Function (NEGF) formalism, we studied in detail the role of magnetic coupling, ligand field, and magnetic anisotropy in the transport characteristics of complex 1. Particularly, our calculations not only reproduce the current-voltage (I-V) characteristics observed in experiments but also unequivocally establish that these arise from an exchange-coupled singlet state that arises due to antiferromagnetic coupling between two high-spin Co(II) centers. Further, the estimated spin Hamiltonian parameters such as J, g values, and D and E/D values are only marginally altered for the molecule at the interface. Further, the exchange-coupled state was found to have very similar transport responses, despite possessing significantly different geometries. Our transport calculations unveil a new feature of the negative differential resistance (NDR) effect on 1 at the bias voltage of 0.9 V, which agrees with the experimental I-V characteristics reported. The spin-filtering efficiency (SFE) computed for the spin-coupled states was found to be only marginal (∼25%); however, if the ligand field is fine-tuned to obtain a low-spin Co(II) center, a substantial SFE of 44% was noted. This spin-coupled state also yields a very strong NDR with a peak-to-valley ratio (PVR) of ∼56 - a record number that has not been witnessed so far in this class of compounds. Additionally, we have established further magnetostructural-transport correlations, providing valuable insights into how microscopic spin Hamiltonian parameters can be associated with SFE. Several design clues to improve the spin-transport characteristics, SFE and NDR in this class of molecule, are offered.

2.
J Am Chem Soc ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917936

RESUMO

Molecular materials are poised to play a significant role in the development of future optoelectronic and quantum technologies. A crucial aspect of these areas is the role of spin-phonon coupling and how it facilitates energy transfer processes such as intersystem crossing, quantum decoherence, and magnetic relaxation. Thus, it is of significant interest to be able to accurately calculate the molecular spin-phonon coupling and spin dynamics in the condensed phase. Here, we demonstrate the maturity of ab initio methods for calculating spin-phonon coupling by performing a case study on a single-molecule magnet and showing quantitative agreement with the experiment, allowing us to explore the underlying origins of its spin dynamics. This feat is achieved by leveraging our recent developments in analytic spin-phonon coupling calculations in conjunction with a new method for including the infinite electrostatic potential in the calculations. Furthermore, we make the first ab initio determination of phonon lifetimes and line widths for a molecular magnet to prove that the commonplace Born-Markov assumption for the spin dynamics is valid, but such "exact" phonon line widths are not essential to obtain accurate magnetic relaxation rates. Calculations using this approach are facilitated by the open-source packages we have developed, enabling cost-effective and accurate spin-phonon coupling calculations on molecular solids.

3.
J Am Chem Soc ; 145(16): 8996-9002, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37068040

RESUMO

The recent discovery of metal-metal bonding and valence delocalization in the dilanthanide complexes (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Y, Gd, Tb, Dy) opened up the prospect of harnessing the 4fn5dz21 electron configurations of non-traditional divalent lanthanide ions to access molecules with novel bonding motifs and magnetism. Here, we report the trinuclear mixed-valence clusters (CpiPr5)3Ln3H3I2 (1-Ln, Ln = Y, Gd), which were synthesized via potassium graphite reduction of the trivalent clusters (CpiPr5)3Ln3H3I3. Structural, computational, and spectroscopic analyses support valence delocalization in 1-Ln resulting from a three-center, one-electron σ bond formed from the 4dz2 and 5dz2 orbitals on Y and Gd, respectively. Dc magnetic susceptibility data obtained for 1-Gd reveal that valence delocalization engenders strong parallel alignment of the σ-bonding electron and the 4f electrons of each gadolinium center to afford a high-spin ground state of S = 11. Notably, this represents the first clear instance of metal-metal bonding in a molecular trilanthanide complex, and the large spin-spin exchange constant of J = 168(1) cm-1 determined for 1-Gd is only the second largest coupling constant characterized to date for a molecular lanthanide compound.

4.
J Am Chem Soc ; 145(16): 9152-9163, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043770

RESUMO

Here, we report the synthesis of two new sets of dibismuth-bridged rare earth molecules. The first series contains a bridging diamagnetic Bi22- anion, (Cp*2RE)2(µ-η2:η2-Bi2), 1-RE (where Cp* = pentamethylcyclopentadienyl; RE = Gd (1-Gd), Tb (1-Tb), Dy (1-Dy), Y (1-Y)), while the second series comprises the first Bi23- radical-containing complexes for any d- or f-block metal ions, [K(crypt-222)][(Cp*2RE)2(µ-η2:η2-Bi2•)]·2THF (2-RE, RE = Gd (2-Gd), Tb (2-Tb), Dy (2-Dy), Y (2-Y); crypt-222 = 2.2.2-cryptand), which were obtained from one-electron reduction of 1-RE with KC8. The Bi23- radical-bridged terbium and dysprosium congeners, 2-Tb and 2-Dy, are single-molecule magnets with magnetic hysteresis. We investigate the nature of the unprecedented lanthanide-bismuth and bismuth-bismuth bonding and their roles in magnetic communication between paramagnetic metal centers, through single-crystal X-ray diffraction, ultraviolet-visible/near-infrared (UV-vis/NIR) spectroscopy, SQUID magnetometry, DFT and multiconfigurational ab initio calculations. We find a πz* ground SOMO for Bi23-, which has isotropic spin-spin exchange coupling with neighboring metal ions of ca. -20 cm-1; however, the exchange coupling is strongly augmented by orbitally dependent terms in the anisotropic cases of 2-Tb and 2-Dy. As the first examples of p-block radicals beneath the second row bridging any metal ions, these studies have important ramifications for single-molecule magnetism, main group element, rare earth metal, and coordination chemistry at large.

5.
Chem Commun (Camb) ; 59(18): 2656-2659, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780133

RESUMO

The effects of external pressure on a high-performing dysprosocenium single-molecule magnet are investigated using a combination of X-ray diffraction, magnetometry and theoretical calculations. The effective energy barrier (Ueff) decreases from ca. 1300 cm-1 at ambient pressure to ca. 1125 cm-1 at 3 GPa. Our results indicate that compression < 1.2 GPa has a negligible effect on the Orbach process, but magnetic relaxation > 1 GPa increases via Raman relaxation and/or quantum tunnelling of magnetisation.

6.
Chem Commun (Camb) ; 57(86): 11350-11353, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34643193

RESUMO

Detailed ab initio CASSCF calculations coupled with periodic DFT studies on a series of [Dy(Cp)2]+ molecules encapsulated in a single-wall carbon nanotube found that encapsulation offers stability to these fragile molecules and also significantly enhances the Ueff values. Most importantly, this encapsulation suppresses the key vibrations responsible for reducing the blocking temperature, offering a hitherto unknown strategy for a new generation of SIM-based devices.

7.
Chem Commun (Camb) ; 55(57): 8238-8241, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31250845

RESUMO

Periodic DFT calculations on a {Mn19} cluster possessing S = 83/2 ground state and its reduced variant on a Au(111) surface unravel the importance of structural distortions that triggered drastic variations in the J values leading to a large reduction in the spin ground state. Reduction of MnIII ions leads to antiferromagnetic Js with a very small spin ground state manifesting the non-innocent behavior of the Au(111) surface.

8.
Bioorg Chem ; 79: 190-200, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772469

RESUMO

New steroidal imidazolidinthione derivatives (4-6) were synthesized from steroidal thiosemicarbazones and dichloroethane. The synthesized compounds were characterized using spectral data analysis. Theoretical DFT involving B3LYP/6-31G∗∗ level of theory was employed to gain insights into the molecular structure of the target compounds. MEPS and FMO analysis were carried out. HOMO-LUMO energy gap was determined which helped to evaluate various global descriptors like hardness, chemical potential, electronegativity, nucleophilicity and electrophilicity index, etc. The calculated properties established that the synthesized products are more or less similar in their reactivity behaviour. To explore their biological potential, interaction studies of compounds (4-6) with DNA were carried out using various biophysical techniques. The compounds bind DNA preferentially through electrostatic and hydrophobic interactions with Kb of 3.21 × 103 M-1, 2.79 × 103 M-1 and 2.26 × 103 M-1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis of compound 4 demonstrated strong interaction during the concentration dependent cleavage activity with pBR322 DNA. It was observed that these steroidal imidazolidinthiones are minor groove binders of DNA which was validated using molecular docking studies. An in vitro cytotoxicity screening using MTT assay revealed that the compounds (4-6) exhibit potential toxicity against different human cancer cells. Highest antiproliferative effect was observed on HeLa cells by compound 4. The results suggested that compounds 4-6 cause apoptotic cell death by cleaving apoptotic protein caspase-3 and suppress anti-apoptotic protein Bcl-2 in HeLa cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Esteroides/farmacologia , Tionas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Imidazóis/síntese química , Imidazóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química
9.
Int J Biol Macromol ; 111: 52-61, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29292141

RESUMO

The new steroidal pyrimidine derivatives (4-6) were synthesized by the reaction of steroidal thiosemicarbazones with (2-methyl) diethyl malonate in absolute ethanol. After characterization by spectral and analytical data, the DNA interaction studies of compounds (4-6) were carried out by UV-vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31×103M-1, 1.93×103M-1 and 2.05×103M-1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed a strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of steroidal pyrimidine moiety in the minor groove of DNA. During in vitro cytotoxicity, compounds (4-6) revealed potential toxicity against the different human cancer cells (MTT assay). During DAPI staining, the nuclear fragmentations on cells occurred after treatment with compounds 4 and 5. Western blotting analysis clearly indicates that compound 4 causes apoptosis in MCF-7 cancer cells. The results revealed that compound 4 has better prospectus to act as a cancer chemotherapeutic candidate, which warrants further in vivo anticancer investigations.


Assuntos
Antineoplásicos/química , DNA/efeitos dos fármacos , Pirimidinas/química , Tiossemicarbazonas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Malonatos/síntese química , Malonatos/química , Malonatos/farmacologia , Simulação de Acoplamento Molecular , Pirimidinas/síntese química , Pirimidinas/farmacologia , Esteroides/síntese química , Esteroides/química , Esteroides/farmacologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...